PCDVD數位科技討論區
PCDVD數位科技討論區   註冊 常見問題 標記討論區為已讀

回到   PCDVD數位科技討論區 > 其他群組 > 七嘴八舌異言堂
帳戶
密碼
 

  回應
 
主題工具
ACG
Basic Member
 

加入日期: Oct 2001
文章: 17
引用:
作者b9156032
那一份只是他拿去給他所謂的「技職學校前三名」的學生做的....
應該不是入學考題吧??


嗯...今年考試題目如果有這麼簡單就好了
94年入學考題在可以下載
就可以知道這個"利"委...嗯...

不過...小弟也是他所謂的0分的那群人之一
專業、共同都不行


國文76,英文56、數學20、專一34、專二40
     
      

此文章於 2005-10-26 09:47 PM 被 ACG 編輯.
舊 2005-10-26, 09:28 PM #51
回應時引用此文章
ACG離線中  
銀★Club
*停權中*
 
銀★Club的大頭照
 

加入日期: Apr 2001
您的住址: 台中市
文章: 2,943
引用:
作者Rusio
記者轉述可能有問題,假設新聞稿內容是真的的話
這份是入學考題,當然也有可能程振隆說謊http://tw.news.yahoo.com/051026/39/2ghrl.html
哪一個學校他也沒說


學生考試而言,當放棄某科目時,該科考卷會在5分鐘寫完,出現一些怪怪的答案很正常!
 
舊 2005-10-26, 09:31 PM #52
回應時引用此文章
銀★Club離線中  
gstyle
*停權中*
 

加入日期: Apr 2003
文章: 3,060
又再一次技職跟正統的,準備大戰了.
舊 2005-10-26, 09:47 PM #53
回應時引用此文章
gstyle離線中  
kylet
Major Member
 
kylet的大頭照
 

加入日期: Sep 2002
您的住址: The Matrix V10.0
文章: 172
唔..........

最近媒體沒甚麼大事可以報,又要來鞭教育了嗎...
舊 2005-10-26, 10:03 PM #54
回應時引用此文章
kylet離線中  
Gary1978
Master Member
 
Gary1978的大頭照
 

加入日期: May 2002
您的住址: 台北新店
文章: 1,549
首先應該要看抽查的對象是哪些學校吧!再者...他也只抽查私立的學校,
根本就不太公平了,何況就算是抽到我我也未必要乖乖配合,當我知道是
某個立委在做的調查的時候,壓根不想配合。
舊 2005-10-26, 10:20 PM #55
回應時引用此文章
Gary1978離線中  
sofaly
*停權中*
 

加入日期: Jan 2004
文章: 99
國小六年都跟鄰居走路上下課 小孩子在途中總很多是可以做很多話可以說

我朋友:你知道上大學學的是什麼嗎?
我:ㄝ..學什麼阿?
我朋友:學1+1=2
我:不會吧怎麼可能
我朋友振振有辭的說)但是他們的1+1=2跟我們學的不一樣
他們是1+1為什麼等於2
我:挖 對厚!對什麼1+1=2
對不起重點是....讀大學的大大請解釋1+1為什麼等於2
解開我這個小小的疑問
舊 2005-10-26, 10:33 PM #56
回應時引用此文章
sofaly離線中  
Life's A Strugg
Regular Member
 
Life's A Strugg的大頭照
 

加入日期: Mar 2004
您的住址: 現實的社會
文章: 57
引用:
作者davidwesly
樓上的你說的對.....不過我發現技職體系的學生不會做那些題目是真的...不敢說全部...但至少有半數.....因為我弟目前就讀某科大.....從高中起就沒看過他帶課本上學.....所以...那位立委雖然誇大,,,卻也反映出一半的事實................

你確定是科大生!
我看是掛科大的夜四技或二專吧!
日間部四年制沒爛到一半!!
一半是你說的.你做好心理準備.為這句話負責吧!!
__________________

擾人,自擾。


舊 2005-10-26, 10:49 PM #57
回應時引用此文章
Life's A Strugg離線中  
89085900
Junior Member
 
89085900的大頭照
 

加入日期: Mar 2005
您的住址: 台灣
文章: 717
Talking

引用:
作者sofaly
國小六年都跟鄰居走路上下課 小孩子在途中總很多是可以做很多話可以說

我朋友:你知道上大學學的是什麼嗎?
我:ㄝ..學什麼阿?
我朋友:學1+1=2
我:不會吧怎麼可能
我朋友振振有辭的說)但是他們的1+1=2跟我們學的不一樣
他們是1+1為什麼等於2
我:挖 對厚!對什麼1+1=2
對不起重點是....讀大學的大大請解釋1+1為什麼等於2
解開我這個小小的疑問


1+1=1(以整體來算),1+1=2(以個別來算)(以上是十進制)
1+1=10(二進制)
__________________
我的名言1:War is for peace,peace is for war
我的名言2:生命能量就是氣(腦氣+血氣+心氣+肝氣+腎氣.....=精氣,氣衰則易病,氣盡則人亡)
范仲淹名言:不以物喜,不以己悲
我的座右銘:要有理想,也要兼顧現實,更要會做自己

此文章於 2005-10-26 11:33 PM 被 89085900 編輯.
舊 2005-10-26, 11:14 PM #58
回應時引用此文章
89085900離線中  
horsetw
Advance Member
 
horsetw的大頭照
 

加入日期: Sep 2005
您的住址: 天文實驗室
文章: 339
引用:
作者ACG
嗯...今年考試題目如果有這麼簡單就好了
94年入學考題在這 (http://www.tcte.edu.tw/four/94_4y/)可以下載
就可以知道這個"利"委...嗯...

不過...小弟也是他所謂的0分的那群人之一
專業、共同都不行


國文76,英文56、數學20、專一34、專二40

剛剛去抓國文的試題來寫,總分是100沒錯吧?
錯了8題,得分84分...比我當初考四技二專時還高

目前是私立二技延畢生...
__________________
你問我腳下的小水塘 那只是我的手汗...

此文章於 2005-10-26 11:21 PM 被 horsetw 編輯. 原因: 改錯字...@@
舊 2005-10-26, 11:16 PM #59
回應時引用此文章
horsetw離線中  
lucses
*停權中*
 
lucses的大頭照
 

加入日期: Nov 2002
您的住址: 回歸三民主義
文章: 3,371
引用:
作者sofaly
國小六年都跟鄰居走路上下課 小孩子在途中總很多是可以做很多話可以說

我朋友:你知道上大學學的是什麼嗎?
我:ㄝ..學什麼阿?
我朋友:學1+1=2
我:不會吧怎麼可能
我朋友振振有辭的說)但是他們的1+1=2跟我們學的不一樣
他們是1+1為什麼等於2
我:挖 對厚!對什麼1+1=2
對不起重點是....讀大學的大大請解釋1+1為什麼等於2
解開我這個小小的疑問


證明1+1=2

We will proceed as follows: we define


0 = {}.


In order to define "1," we must fix a set with exactly one element;

thus


1 = {0}.


Continuing in fashion, we define


2 = {0,1},

3 = {0,1,2},

4 = {0,1,2,3}, etc.


The reader should note that 0 = {}, 1 = {{}}, 2 = {{},{{}}}, etc.

Our natural numbers are constructions beginning with the empty set.


The preceding definitions can be restarted, a little more precisely,

as follows. If A is a set, we define the successor of A to be the set

A^+, given by


A^+ = A ∪ {A}.


Thus, A^+ is obtained by adjoining to A exactly one new element,

namely the element A. Now we define


0 = {},

1 = 0^+,

2 = 1^+,

3 = 2^+, etc.


現在問題來了, 有一個 set 是包括所有 natural numbers 的嗎 ? (甚至問

一個 class). 這邊先定義一個名詞, 接著在引 A9, 我們就可以造出一個 set

包括所有的 natural numbers.


A set A is called a successor set if it has the following properties:


i) {} [- A.

ii) If X [- A, then X^+ [- A.


It is clear that any successor set necessarily includes all the natural

numbers. Motivated bt this observation, we introduce the following

important axiom.


A9 (Axiom of Infinity). There exist a successor set.


As we have noted, every successor set includes all the natural numbers;

thus it would make sense to define the "set of the natural numbera" to

be the smallest successor set. Now it is easy to verify that any

intersection of successor sets is a successor set; in particular, the

intersection of all the successor sets is a successor set (it is obviously

the smallest successor set). Thus, we are led naturally to the following

definition.



6.1 Definition By the set of the natural numbers we mean the intersection

of all the successor sets. The set of the natural numbers is designated by

the symbol ω; every element of ω is called a natural number.

6.2 Theorem For each n [- ω, n^+≠0.

Proof. By definition, n^+ = n ∪ {n}; thus n [- n^+ for each natural

number n; but 0 is the empty set, hence 0 cannot be n^+ for any n.


6.3 Theorem (Mathematical Induction). Let X be a subset of ω; suppose

X has the following properties:


i) 0 [- X.

ii) If n [- X, then n^+ [- X.


Then X = ω.


Proof. Conditions (i) and (ii) imply that X is a successor set. By 6.1

ω is a subset of every successor set; thus ω 包含於 X. But X 包含於 ω;

so X = ω.



6.4 Lemma Let m and natural numbers; if m [- n^+, then m [- n or m = n.

Proof. By definition, n^+ = n ∪ {n}; thus, if m [- n^+, then m [- n

or m [- {n}; but {n} is a singleton, so m [- {n} iff m = n.

6.5 Definition A set A is called transitive if, for such

x [- A, x 包含於 A.


6.6 Lemma Every natural number is a transitive set.

Proof. Let X be the set of all the elements of ω which

are transitive sets; we will prove, using mathematical induction

(Theorem 6.3), that X = ω; it will follow that every natural

number is a transitive set.


i) 0 [- X, for if 0 were not a transitive set, this would mean

that 存在 y [- 0 such that y is not a subset of 0; but this is

absurd, since 0 = {}.

ii) Now suppose that n [- X; we will show that n^+ is a transitive

set; that is, assuming that n is a transitive set, we will show

that n^+ is a transitive set. Let m [- n^+; by 6.4 m [- n

or m = n. If m [- n, then (because n is transitive) m 包含於 n;

but n 包含於 n^+, so m 包含於 n^+. If n = m, then (because n

包含於 n^+) m 包含於 n^+; thus in either case, m 包含於 n^+, so

n^+ [- X. It folloes by 6.3 that X = ω.


6.7 Theorem Let n and m be natural numbers. If n^+ = m^+, then n = m.

Proof. Suppose n^+ = m^+; now n [- n^+, hence n [- m^+;

thus by 6.4 n [- m or n = m. By the very same argument,

m [- n or m = n. If n = m, the theorem is proved. Now

suppose n≠m; then n [- m and m [- n. Thus by 6.5 and 6.6,

n 包含於 m and m 包含於 n, hence n = m.

6.8 Recursion Theorem

Let A be a set, c a fixed element of A, and f a function from

A to A. Then there exists a unique function γ: ω -> A such

that


I. γ(0) = c, and

II. γ(n^+) = f(γ(n)), 對任意的 n [- ω.


Proof. First, we will establish the existence of γ. It should

be carefully noted that γ is a set of ordered pairs which is a

function and satisfies Conditions I and II. More specifically,

γ is a subset of ω╳A with the following four properties:


1) 對任意的 n [- ω, 存在 x [- A s.t. (n,x) [- γ.

2) If (n,x_1) [- γ and (n,x_2) [- γ, then x_1 = x_2.

3) (0,c) [- γ.

4) If (n,x) [- γ, then (n^+,f(x)) [- γ.


Properties (1) and (2) express the fact that γ is a function from

ω to A, while properties (3) and (4) are clearly equivalent to

I and II. We will now construct a graph γ with these four properties.


Let


Λ = { G | G 包含於 ω╳A and G satisfies (3) and (4) };


Λ is nonempty, because ω╳A [- Λ. It is easy to see that any

intersection of elements of Λ is an element of Λ; in particular,


γ = ∩ G

G[-Λ


is an element of Λ. We proceed to show that γ is the function

we require.


By construction, γ satisfies (3) and (4), so it remains only to

show that (1) and (2) hold.


1) It will be shown by induction that domγ = ω, which clearly

implies (1). By (3), (0,c) [- γ; now suppose n [- domγ. Then

存在 x [- A 使得 (n,x) [-γ; by (4), then, (n^+,f(x)) [- γ,

so n^+ [- domγ. Thus, by Theorem 6.3 domγ = ω.


2) Let


N = { n [- ω | (n,x) [- γ for no more than one x [- A }.


It will be shown by induction that N = ω. To prove that 0 [- N,

we first assume the contrary; that is, we assume that (0,c) [- γ

and (0,d) [- γ where c≠d. Let γ^* = γ - {(0,d)}; certainly

γ^* satisfies (3); to show that γ^* satisfies (4), suppose that

(n,x) [- γ^*. Then (n,x) [- γ, so (n^+,f(x)) [- γ; but n^+≠0

(Theorem 6.2), so (n^+,f(x))≠(0,d), and consequently (n^+,f(x)) [-

γ^*. We conclude that γ^* satisfies (4), so γ^* [- Λ; but γ is

the intersection of all elements of Λ, so γ 包含於 γ^*. This is

impossible, hence 0 [- N. Next, we assume that n [- N and prove

that n^+ [- N. To do so, we first assume the contrary -- that is,

we suppose that (n,x) [- γ, (n^+,f(x)) [- γ, and (n^+,u) [- γ

where u≠f(x). Let γ^。 = γ - {(n^+,u)}; γ^。 satisfies (3) because

(n^+,u)≠(0,c) (indeed, n^+≠0 by Theorem 6.2). To show that γ^。

satisfies (4), suppose (m,v) [- γ^。; then (m,v) [- γ, so

(m^+,f(v)) [- γ. Now we consider two cases, according as

(a) m^+≠n^+ or (b) m^+ = n^+.


a) m^+≠n^+. Then (m^+,f(v))≠(n^+,u), so (m^+,f(v)) [- γ^。.

b) m^+ = n^+. Then m = n by 6.7, so (m,v) = (n,v); but n [- N,

so (n,x) [- γ for no more than one x [- A; it follows that v = x,

and so


(m^+,f(v)) = (n^+,f(x)) [- γ^。.


Thus, in either case (a) or (b), (m^+,f(v)) [- γ^。, thus, γ^。

satisfies Condition (4), so γ^。[- Λ. But γ is the intersection

of all the elements of Λ, so γ 包含於 γ^。; this is impossible,

so we conclude that n^+ [- N. Thus N = ω.

Finally, we will prove that γ is unique. Let γ and γ' be functions,

from ω to A which satisfy I and II. We will prove by induction that

γ = γ'. Let


M = { n [- ω | γ(n) = γ'(n) }.


Now γ(0) = c = γ'(0), so 0 [- M; next, suppose that n [- M. Then

γ(n^+) = f(γ(n)) = f(γ'(n)) = γ'(n^+),


hence n^+ [- M.


If m is a natural number, the recurion theorem guarantees the

existence of a unique function γ_m: ω -> ω defined by the

two Conditions


I. γ_m(0)=m,

II. γ_m(n^+) = [γ_m(n)]^+, 對任意的 n [- ω.


Addition of natural numbers is now defined as follows:


m + n = γ_m(n) for all m, n [- ω.



6.10 m + 0 = m,

m + n^+ = (m + n)^+.


6.11 Lemma n^+ = 1 + n, where 1 is defined to be 0^+


Proof. This can be proven by induction on n. If n = 0,

then we have


0^+ = 1 = 1 + 0

0^+ = 1 = 1 + 0


(this last equality follows from 6.10), hence the lemma holds

for n = 0. Now, assuming the lemma is true for n, let us show

that it holds for n^+:


1 + n^+ = (1 + n)^+ by 6.10

= (n^+)^+ by the hypothesis of induction.



把 n = 1 並且注意 2 = 1^+, 故 1 + 1 = 2.
舊 2005-10-26, 11:25 PM #60
回應時引用此文章
lucses離線中  


    回應


POPIN
主題工具

發表文章規則
不可以發起新主題
不可以回應主題
不可以上傳附加檔案
不可以編輯您的文章

vB 代碼打開
[IMG]代碼打開
HTML代碼關閉



所有的時間均為GMT +8。 現在的時間是06:30 AM.


vBulletin Version 3.0.1
powered_by_vbulletin 2025。