![]() |
||
|
*停權中*
加入日期: Apr 2001 您的住址: 台中市
文章: 2,943
|
引用:
學生考試而言,當放棄某科目時,該科考卷會在5分鐘寫完,出現一些怪怪的答案很正常! |
|||
|
|
|
*停權中*
加入日期: Apr 2003
文章: 3,060
|
又再一次技職跟正統的,準備大戰了.
|
|
|
|
Major Member
![]() 加入日期: Sep 2002 您的住址: The Matrix V10.0
文章: 172
|
唔..........
最近媒體沒甚麼大事可以報,又要來鞭教育了嗎... ![]() |
|
|
|
Master Member
加入日期: May 2002 您的住址: 台北新店
文章: 1,549
|
首先應該要看抽查的對象是哪些學校吧!再者...他也只抽查私立的學校,
根本就不太公平了,何況就算是抽到我我也未必要乖乖配合,當我知道是 某個立委在做的調查的時候,壓根不想配合。 |
|
|
|
*停權中*
加入日期: Jan 2004
文章: 99
|
國小六年都跟鄰居走路上下課 小孩子在途中總很多是可以做很多話可以說
我朋友:你知道上大學學的是什麼嗎? 我:ㄝ..學什麼阿? 我朋友:學1+1=2 我:不會吧怎麼可能 我朋友 振振有辭的說)但是他們的1+1=2跟我們學的不一樣他們是1+1為什麼等於2 我:挖 對厚!對什麼1+1=2 對不起重點是....讀大學的大大請解釋1+1為什麼等於2 解開我這個小小的疑問 |
|
|
|
Regular Member
![]() ![]() 加入日期: Mar 2004 您的住址: 現實的社會
文章: 57
|
引用:
你確定是科大生! 我看是掛科大的夜四技或二專吧! 日間部四年制沒爛到一半!! 一半是你說的.你做好心理準備.為這句話負責吧!!
__________________
擾人,自擾。
|
|
|
|
|
Junior Member
![]() ![]() ![]() 加入日期: Mar 2005 您的住址: 台灣
文章: 717
|
引用:
1+1=1(以整體來算),1+1=2(以個別來算)(以上是十進制) 1+1=10(二進制)
__________________
我的名言1:War is for peace,peace is for war 我的名言2:生命能量就是氣(腦氣+血氣+心氣+肝氣+腎氣.....=精氣,氣衰則易病,氣盡則人亡) 范仲淹名言:不以物喜,不以己悲 我的座右銘:要有理想,也要兼顧現實,更要會做自己 此文章於 2005-10-26 11:33 PM 被 89085900 編輯. |
|
|
|
|
Advance Member
![]() ![]() 加入日期: Sep 2005 您的住址: 天文實驗室
文章: 339
|
引用:
剛剛去抓國文的試題來寫,總分是100沒錯吧? 錯了8題,得分84分...比我當初考四技二專時還高 目前是私立二技延畢生... 此文章於 2005-10-26 11:21 PM 被 horsetw 編輯. 原因: 改錯字...@@ |
|
|
|
|
*停權中*
加入日期: Nov 2002 您的住址: 回歸三民主義
文章: 3,371
|
引用:
證明1+1=2 We will proceed as follows: we define 0 = {}. In order to define "1," we must fix a set with exactly one element; thus 1 = {0}. Continuing in fashion, we define 2 = {0,1}, 3 = {0,1,2}, 4 = {0,1,2,3}, etc. The reader should note that 0 = {}, 1 = {{}}, 2 = {{},{{}}}, etc. Our natural numbers are constructions beginning with the empty set. The preceding definitions can be restarted, a little more precisely, as follows. If A is a set, we define the successor of A to be the set A^+, given by A^+ = A ∪ {A}. Thus, A^+ is obtained by adjoining to A exactly one new element, namely the element A. Now we define 0 = {}, 1 = 0^+, 2 = 1^+, 3 = 2^+, etc. 現在問題來了, 有一個 set 是包括所有 natural numbers 的嗎 ? (甚至問 一個 class). 這邊先定義一個名詞, 接著在引 A9, 我們就可以造出一個 set 包括所有的 natural numbers. A set A is called a successor set if it has the following properties: i) {} [- A. ii) If X [- A, then X^+ [- A. It is clear that any successor set necessarily includes all the natural numbers. Motivated bt this observation, we introduce the following important axiom. A9 (Axiom of Infinity). There exist a successor set. As we have noted, every successor set includes all the natural numbers; thus it would make sense to define the "set of the natural numbera" to be the smallest successor set. Now it is easy to verify that any intersection of successor sets is a successor set; in particular, the intersection of all the successor sets is a successor set (it is obviously the smallest successor set). Thus, we are led naturally to the following definition. 6.1 Definition By the set of the natural numbers we mean the intersection of all the successor sets. The set of the natural numbers is designated by the symbol ω; every element of ω is called a natural number. 6.2 Theorem For each n [- ω, n^+≠0. Proof. By definition, n^+ = n ∪ {n}; thus n [- n^+ for each natural number n; but 0 is the empty set, hence 0 cannot be n^+ for any n. 6.3 Theorem (Mathematical Induction). Let X be a subset of ω; suppose X has the following properties: i) 0 [- X. ii) If n [- X, then n^+ [- X. Then X = ω. Proof. Conditions (i) and (ii) imply that X is a successor set. By 6.1 ω is a subset of every successor set; thus ω 包含於 X. But X 包含於 ω; so X = ω. 6.4 Lemma Let m and natural numbers; if m [- n^+, then m [- n or m = n. Proof. By definition, n^+ = n ∪ {n}; thus, if m [- n^+, then m [- n or m [- {n}; but {n} is a singleton, so m [- {n} iff m = n. 6.5 Definition A set A is called transitive if, for such x [- A, x 包含於 A. 6.6 Lemma Every natural number is a transitive set. Proof. Let X be the set of all the elements of ω which are transitive sets; we will prove, using mathematical induction (Theorem 6.3), that X = ω; it will follow that every natural number is a transitive set. i) 0 [- X, for if 0 were not a transitive set, this would mean that 存在 y [- 0 such that y is not a subset of 0; but this is absurd, since 0 = {}. ii) Now suppose that n [- X; we will show that n^+ is a transitive set; that is, assuming that n is a transitive set, we will show that n^+ is a transitive set. Let m [- n^+; by 6.4 m [- n or m = n. If m [- n, then (because n is transitive) m 包含於 n; but n 包含於 n^+, so m 包含於 n^+. If n = m, then (because n 包含於 n^+) m 包含於 n^+; thus in either case, m 包含於 n^+, so n^+ [- X. It folloes by 6.3 that X = ω. 6.7 Theorem Let n and m be natural numbers. If n^+ = m^+, then n = m. Proof. Suppose n^+ = m^+; now n [- n^+, hence n [- m^+; thus by 6.4 n [- m or n = m. By the very same argument, m [- n or m = n. If n = m, the theorem is proved. Now suppose n≠m; then n [- m and m [- n. Thus by 6.5 and 6.6, n 包含於 m and m 包含於 n, hence n = m. 6.8 Recursion Theorem Let A be a set, c a fixed element of A, and f a function from A to A. Then there exists a unique function γ: ω -> A such that I. γ(0) = c, and II. γ(n^+) = f(γ(n)), 對任意的 n [- ω. Proof. First, we will establish the existence of γ. It should be carefully noted that γ is a set of ordered pairs which is a function and satisfies Conditions I and II. More specifically, γ is a subset of ω╳A with the following four properties: 1) 對任意的 n [- ω, 存在 x [- A s.t. (n,x) [- γ. 2) If (n,x_1) [- γ and (n,x_2) [- γ, then x_1 = x_2. 3) (0,c) [- γ. 4) If (n,x) [- γ, then (n^+,f(x)) [- γ. Properties (1) and (2) express the fact that γ is a function from ω to A, while properties (3) and (4) are clearly equivalent to I and II. We will now construct a graph γ with these four properties. Let Λ = { G | G 包含於 ω╳A and G satisfies (3) and (4) }; Λ is nonempty, because ω╳A [- Λ. It is easy to see that any intersection of elements of Λ is an element of Λ; in particular, γ = ∩ G G[-Λ is an element of Λ. We proceed to show that γ is the function we require. By construction, γ satisfies (3) and (4), so it remains only to show that (1) and (2) hold. 1) It will be shown by induction that domγ = ω, which clearly implies (1). By (3), (0,c) [- γ; now suppose n [- domγ. Then 存在 x [- A 使得 (n,x) [-γ; by (4), then, (n^+,f(x)) [- γ, so n^+ [- domγ. Thus, by Theorem 6.3 domγ = ω. 2) Let N = { n [- ω | (n,x) [- γ for no more than one x [- A }. It will be shown by induction that N = ω. To prove that 0 [- N, we first assume the contrary; that is, we assume that (0,c) [- γ and (0,d) [- γ where c≠d. Let γ^* = γ - {(0,d)}; certainly γ^* satisfies (3); to show that γ^* satisfies (4), suppose that (n,x) [- γ^*. Then (n,x) [- γ, so (n^+,f(x)) [- γ; but n^+≠0 (Theorem 6.2), so (n^+,f(x))≠(0,d), and consequently (n^+,f(x)) [- γ^*. We conclude that γ^* satisfies (4), so γ^* [- Λ; but γ is the intersection of all elements of Λ, so γ 包含於 γ^*. This is impossible, hence 0 [- N. Next, we assume that n [- N and prove that n^+ [- N. To do so, we first assume the contrary -- that is, we suppose that (n,x) [- γ, (n^+,f(x)) [- γ, and (n^+,u) [- γ where u≠f(x). Let γ^。 = γ - {(n^+,u)}; γ^。 satisfies (3) because (n^+,u)≠(0,c) (indeed, n^+≠0 by Theorem 6.2). To show that γ^。 satisfies (4), suppose (m,v) [- γ^。; then (m,v) [- γ, so (m^+,f(v)) [- γ. Now we consider two cases, according as (a) m^+≠n^+ or (b) m^+ = n^+. a) m^+≠n^+. Then (m^+,f(v))≠(n^+,u), so (m^+,f(v)) [- γ^。. b) m^+ = n^+. Then m = n by 6.7, so (m,v) = (n,v); but n [- N, so (n,x) [- γ for no more than one x [- A; it follows that v = x, and so (m^+,f(v)) = (n^+,f(x)) [- γ^。. Thus, in either case (a) or (b), (m^+,f(v)) [- γ^。, thus, γ^。 satisfies Condition (4), so γ^。[- Λ. But γ is the intersection of all the elements of Λ, so γ 包含於 γ^。; this is impossible, so we conclude that n^+ [- N. Thus N = ω. Finally, we will prove that γ is unique. Let γ and γ' be functions, from ω to A which satisfy I and II. We will prove by induction that γ = γ'. Let M = { n [- ω | γ(n) = γ'(n) }. Now γ(0) = c = γ'(0), so 0 [- M; next, suppose that n [- M. Then γ(n^+) = f(γ(n)) = f(γ'(n)) = γ'(n^+), hence n^+ [- M. If m is a natural number, the recurion theorem guarantees the existence of a unique function γ_m: ω -> ω defined by the two Conditions I. γ_m(0)=m, II. γ_m(n^+) = [γ_m(n)]^+, 對任意的 n [- ω. Addition of natural numbers is now defined as follows: m + n = γ_m(n) for all m, n [- ω. 6.10 m + 0 = m, m + n^+ = (m + n)^+. 6.11 Lemma n^+ = 1 + n, where 1 is defined to be 0^+ Proof. This can be proven by induction on n. If n = 0, then we have 0^+ = 1 = 1 + 0 0^+ = 1 = 1 + 0 (this last equality follows from 6.10), hence the lemma holds for n = 0. Now, assuming the lemma is true for n, let us show that it holds for n^+: 1 + n^+ = (1 + n)^+ by 6.10 = (n^+)^+ by the hypothesis of induction. 把 n = 1 並且注意 2 = 1^+, 故 1 + 1 = 2. |
|
|
|