*停權中*
|
(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)+1
=(2^3+2^2+2^1+2^0)(2^4+1)(2^8+1)(2^16+1)+1
=(2^7+2^6+2^5+…+2^2+2^1+2^0)(2^8+1)(2^16+1)+1
=(2^15+2^14+2^13+…+2^2+2^1+2^0)(2^16+1)+1
=2^31+2^30+2^29+…+2^2+2^1+2^0+1
=1(2^32-1)/(2-1)+1
=2^32
其中用到等比級數的公式
首項為a,公比為r,項數為n的等比數列和為a(r^n-1)/(r-1)
感謝pennyway及junner
問這種簡單問題真是不好意思
|